
1Cloud Native Applications

Cloud Native
Applications
Architecture and Mindset

32 Cloud Native ApplicationsCloud Native Applications

Contents

1.1 Cloud Native defined 03

2.1 Microservices
2.2 Levels of Modernisation

04
05

1. Introduction 03

2. Cloud Native Architecture

3. Cloud Native Development

4. Conclusion

04

06

07

1. Introduction

1.1 Cloud Native defined

Cloud native is a hot topic in software development. It is revolutionizing the application landscape
and changing the way we think about developing and deploying software. Cloud native is more than
just a set of technologies; it is a philosophical approach to building applications that fully leverage
the cloud. Building cloud native applications is a big undertaking, but the payoff is equally large.
Cloud native applications have fostered innovation and increased agility and flexibility. A cloud
native approach allows software vendors to create scalable applications for modern and dynamic
environments by fully utilizing public, private, or hybrid clouds.

The term cloud native often invokes a lot of confusion, in
part because it is used twofold. One the one hand, cloud
native refers to the approach of building an application that is
intentionally designed for a cloud environment. On the other
hand, the term is also used to describe the characteristics and
architecture of such applications. As technology and the cloud
are constantly developing, so too is the term cloud native.

According to Google Trends, the term was frequently used in
the early 2000s during the starting days of cloud computing
and gained momentum as an industrial buzzword around 2015.
Everyone seems to have a different idea of what exactly cloud
native means, so in an attempt to streamline the term, the
Cloud Native Computing Foundation defined cloud native
as “technologies [that] empower organizations to build and
run scalable applications in modern, dynamic environments
such as public, private, and hybrid clouds. Containers,
service meshes, microservices, immutable infrastructure, and
declarative APIs exemplify this approach. These techniques
enable loosely coupled systems that are resilient, manageable,
and observable. Combined with robust automation, they
allow engineers to make high-impact changes frequently and
predictably with minimal toil.”

The difference between
Cloud native and Cloud
computing

Cloud native should not
be confused with cloud
computing. Cloud computing,
often simply called ‘the
cloud’, refers to the delivery
of infrastructure and services
through the internet. Cloud
native on the other hand
refers to the architecture and
mindset for assembling cloud-
based services in a way that
optimizes them for the cloud
environment.

https://github.com/cncf/foundation/blob/main/charter.md

54 Cloud Native ApplicationsCloud Native Applications

2. Cloud Native Architecture

2.1 Microservices

Just like there are many ways to design a building, different techniques to design and code an
application exist. This is what we call application architecture. The different architecture types have
various strength and weaknesses and lend themselves to different types of applications. Some are
useful for highly scalable applications, whereas others might be more suitable if you want to build a
highly agile application. For complex applications that have multiple subsystems that are frequently
updated, such as contact center software, a microservice architecture is the architecture of choice.

Microservices are an integral component of cloud native applications.
In a microservice architecture, the functionality is divided into loosely
coupled autonomous subsystems, where each subsystem is assigned
a certain business functionality – for the contact center software
these could be call handling and steering, task routing, service
availability calculation or reporting. These systems, which we call
Microservices, can vary in size and contain a single module or a large
chunk of the application. Because the systems are separate from each
other and do not share any code, the most appropriate technologies
can be used for the different services. Microservices communicate through APIs to make up the
fully functioning application.

Microservices can be developed, tested, deployed, and scaled independent of other services,
which makes application maintenance a lot easier. Instead of updating a whole application, only
specific components need to be touched. In monolithic application, code dependencies would
become tangled over time, but because microservices don’t share any code, it is easier to roll out
new features. If designed well, an update or bug in one service will not disrupt the rest of the system

APIs are Application
Programming Interfaces.
APIs let different applications
communicate with one another
and enable data transmission.
They are like carrier pigeons
that deliver a message or
requests to the relevant
provider and return with the
appropriate response.

Figure 1 | Google searches for the term “cloud native” worldwide over time

2.2 Levels of modernisation

Software architecture has changed over time and applications can be distinguished by various
levels of modernisation. Traditional applications such as Luware LUCS are built on-premise
using a monolithic architecture, i.e. they use a single codebase for all functionality. In a monolithic
architecture, development teams are restricted to one or two coding languages, code changes
have to be carefully coordinated and deploying new features requires a lot of upfront testing.

and the application can continue to function without any downtime. Meanwhile, in traditional
applications, a bug in one part of the application could hold back an entire release cycle, meaning
new features would be delayed. Microservices facilitate a non-interruptive and quick roll out of
updates and new features.

A Microservices architecture increases agility. Whilst the system at large is more complex in a
Microservice architecture, each individual service is very simple. This means individual services
can be developed and maintained by a small team. This requires less coordination and allows for a
quicker roll-out of features. This increases productivity and lowers development costs.
One of the biggest advantages of a microservice architecture is the scalability. When demand
increases, services can be scaled independently as needed without scaling out the whole
application. New resources can be allocated to the most needed services or new services can
easily be added to the system. For example, if the number of calls increases, new call handlers can
automatically be started to deal with the increased load. Microservices consequently allows for an
optimal use of computing capacity.

Migrate Modernise

Monolithic Architecture Monolithic and N-tier Microservices Architecture

Existing apps

LUCS
On Premise

Cloud

Infrastructure-Ready

Stratus
Cloud

Cloud-Native

Nimbus
Cloud

Figure 2 | Different modernization levels as exemplified by
Luware products [Graphic adapted from Microsoft]

Architected for the cloud

https://docs.microsoft.com/en-us/dotnet/architecture/modernize-with-azure-containers/modernize-existing-apps-to-cloud-optimized/what-about-cloud-native-applications
https://docs.microsoft.com/en-us/dotnet/architecture/modernize-with-azure-containers/modernize-existing-apps-to-cloud-optimized/what-about-cloud-native-applications

76 Cloud Native ApplicationsCloud Native Applications

The next step in the modernization process is to migrate the application into the cloud. That means
that instead of running on an enterprise’s on-site server, the application is moved to an off-site
data center where it can be accesses by the enterprise through the internet. Luware Stratus was an
example of such an infrastructure-ready application. The peak of modernization is a cloud native
application such as Luware Nimbus, which is explicitly built using a microservice architecture to
optimally perform and scale in a cloud environment.

Microservices are containerized, which basically means that the code and everything that it
needs to run is bundled up and isolated from the operating environment. This removes any risk of
conflict between different coding languages or frameworks and makes it easy to move containers
into different environments. Containers can be added, replaced, or updated without disrupting
the application at large, making the application agile and hyper-scalable. Orchestrators, such as
Kubernetes, are used to manage containers based on demand to warrant an optimal resource
distribution. Such platforms also make it easier to identify a container with a bug, thereby facilitating
a non-interruptive and simple troubleshooting. This facilitates continuous updates in the software.
Whereas in a monolithic application like LUCS updates are deployed bi-annually, new features are
rolled out weekly or even more frequently in a cloud native application like Nimbus.

3. Cloud Native Development

Cloud native is more than just a set of technologies. Migrating to cloud native software comes with
significant development costs as well as cultural and organizational changes. Software vendors
have to completely reorganize themselves and adapt a cloud native mindset. Whilst the traditional
monolithic approach lends itself to a conservative and cautious mindset, as one missing semicolon
can shut down an entire system, a cloud native culture should embrace failure and promote risk-
taking and allow developers to experiment with new features. Processes are sped up and optimized
for continuous delivery and fast innovation is required to keep up with quickly changing consumer
needs. A cloud native mindset embraces all the architectural possibilities of the cloud in terms of
flexibility, agility, and scalability.

4. Conclusion

 ▪ Cloud native can refer to the fact that an application optimally scales and performs in a cloud
environment. Additionally, cloud native may refer to the key characteristics of cloud native
applications such as a microservice architecture.

 ▪ Cloud native applications are built on microservices. Microservices are packaged into containers
and dynamically orchestrated using for e.g. Kubernetes to optimally distribute resources.

 ▪ Benefits of a microservice architecture include practically unlimited scalability as well as
increased agility to respond to market demands.

 ▪ Microservices facilitate maintainability of applications and updates can be undertaken without
shutting down the application. Resiliency to failures is improved.

 ▪ Transitioning to cloud native development requires a change in mindset to embrace all the
architectural possibilities of the cloud.

Cloud Native
Architecture Mindset

Intentionally designed
for the cloud

Flexibility

Multi-language

Speed

Serverless Agility

Microservices

Containers

Orchestrators
(e.g. Kubernetes)

Open-mindedness

https://www.forbes.com/sites/sap/2021/04/19/the-cultural-shift-towards-a-cloud-native-mindset/?sh=7c85c94d41ad
https://articles.microservices.com/microservices-at-netflix-stop-system-problems-before-they-start-e07c51a1d52d
https://articles.microservices.com/microservices-at-netflix-stop-system-problems-before-they-start-e07c51a1d52d

8Cloud Native Applications

http://www.luware.com

